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Abstract. The structure of a recently introduced droplet in the q-state Potts model is 
analysed. We derive exact relations from which it follows that the incipient infinite droplet 
at the critical temperature is a self-similar fractal made of links and blobs, just as recently 
found in random percolation. The number of links Nllnlts between two points separated 
by a distance of the order b is given by Nlinks xb””R’q) where U&) is the connectedness 
length exponent when T = T,(q) and pB is used as an independent variable. This result 
and the available calculations of U&) indicate that the number of links decreases as 4 
increases. 

An analysis of the structure of the usual clusters made of nearest-neighbour sites in 
a given Potts site configuration is also made. In particular, it shows that for d = 2 the 
incipient infinite cluster is made only of blobs and no links. 

A simple theory of phase transitions and metastability is based on droplet models 
(Fisher 1967, Domb 1976, Binder 1976, Kertesz et a1 1983). An important problem 
is the definition of the right droplet whose size diverges at the critical point with the 
correct exponents. For example, in an Ising model the droplets made up of nearest- 
neighbour (NN) ‘down’ spins (the usual Ising clusters) are known to diverge on the 
coexistence curve below the critical temperature in d = 3 dimensions (Muller- 
Krumbhaar 1974). In two dimensions the mean cluster size diverges at the critical 
point with an exponent y * =  1.91~t0.01 (Sykes and Gaunt 1976) larger than the 
susceptibility exponent y = 1.75. A recent theory (Bruce and Wallace 1981) and an 
earlier suggestion (Stauffer 1977) predict y* = y +@, where @ is the magnetisation 
exponent. 

A more general cluster made of ‘down’ spins connected by bonds being active 
with probability pB has been introduced in the context of polymer gelation (Coniglio 
et a1 1979, Coniglio and Peruggi 1982). 

Coniglio and Klein (1980) predicted that with the special choice of pB =pB(T)=  
1 - exp( -2J /kT) ,  where J is the NN coupling constant, this kind of cluster, which they 
called Ising droplets, would diverge with Ising thermal exponents. These predictions 
have been verified by Monte Carlo methods in two and three dimensions (Stauffer 
1981, Ottavi 1981, Roussenq et a1 1982, Heermann and Stauffer 1981, Jan er a1 
1982, Kertesz er a1 1983). 

More specifically from the renormalisation group analysis (Coniglio and Lubensky 
1980) it follows that the connectedness length 6 has the scaling form 

6 = u - ” B f l ( t / u Q ) .  (1) 
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Here t = ( T  - Tc)/Tc and U = U E  + bt are the scaling variables, E = ( p ~ (  T )  - p B ) / p ~ (  T ) ,  
pB is the bond probability, a and b are constants such that U = 0 if p B  = p B ( T )  
l-exp(-2J/kT), vB is the connectedness length exponent along the path t =0,  
p B  +pB(T), 4 = vB/v  is the crossover exponent and v is the thermal correlation length 
exponent, which is 1 for d = 2 and 5 for d L 4. From the Migdal-Kadanoff renormalisa- 
tion group (MKRG), 4 = 2.02 for d = 2 and from the &-expansion 4 = 4/(2 - d )  near 
d = 6. Therefore 6 diverges with the exponent vB along the path t = 0, E + 0 and with 
the thermal correlation length exponent along the path U = 0 ( p B  = 1 -exp(-2J/kT)). 

The mean cluster size has the scaling form 

s = U - Y B f 2 ( t / U 1 )  (2) 
where yB is related to the susceptibility exponent y via Y B / Y  = 4. YB = 3.54 from 
MKRG for d = 2 and ye = 4/(d -2) near d = 6 from &-expansion. 

A similar analysis was extended by Coniglio and Peruggi (1982) to the q-state 
Potts model with Hamiltonian -% = X(ij)J(q80im, - 1) where ui = 1, . . . , q are the site 
variables. It was found that the droplets made of NN sites in a given Potts state 
connected by bonds with probability 

p B  = p B ( T ) =  1 -exp(-qJ/kt) (3) 
diverge at the Potts critical point with the thermal Potts exponents. For q = 1 they 
found TJ1 j = 0. Being at T = 0 all sites are present, consequently they found that 
the droplets coincide with the random-bond percolation clusters and vB(y = 1 j 
coincides with the connectedness length exponent in the random-bond percolation 
problem. 

Here we want to study the fractal structure of the incipient infinite droplet as 
defined above at the critical Potts temperature Tc(q), following closely the analysis 
made for the incipient infinite cluster in  random percolation. 

Let us first define the fractal dimensionality (Mandelbrot 1977, Stanley 1977, 
Stauffer 1979, Kirkpatrick 1979) d&) of the typical droplet of linear dimension 6 as 

(4) S * ( 4 )  cc [df(q) 

where S* is the number of sites in the droplet. 

expression for the fractal dimensionality of the Potts droplet: 
With the same analysis as for random percolation one is led to the following 

d f ( q ) = d - p ( q ) / v ( q )  (5 ) 
where p(q)  and v(4) are the order parameter and the correlation length exponents 
of the q-state Potts model. For q = 1 equation ( 5 )  gives the fractal dimensionality in 
random percolation. 

An immediate application of the fractal concept follows if we view the thermal 
phase transitions as (nonlinear) processes due to the coalescence of droplets. This is 
a geometrical mechanism which should be not very sensitive to the details of the 
Hamiltonian which will mainly affect the shape and size of small droplets. Therefore 
we expect that the fractal dimensionality, which contains the essential geometric 
information of the large droplets, should also be roughly independent of the details, 
This indeed is the case. For example, for the q-state Potts model in d = 2, df (q )  = 1.896, 
1.875 and 1.866 (q = 1 ,2 ,3 )  (Nienhuis et a1 1980, Nienhuis 1982). 

This point of view is also a physical interpretation of Suzuki’s universality which 
states that, although the exponents y, p, v might be strongly model dependent, the 
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ratios y / v  and p / v ,  which by means of scaling can be expressed in terms of dt only, 
are roughly model independent (Stanley 1977). 

We want to study now in more detail the structure of the incipient infinite droplets. 
We observe that, given two points separated by a distance of the order of the 
connectedness length 6, we can always distinguish between dangling bonds or loose 
ends and backbone bonds. The backbone bonds are made of cutting bonds or links 
such that if one is cut the droplet breaks in two parts and multiply connected bonds 
which lump in blobs. This distinction in three categories of bonds was originally 
introduced by Stanley (1977) for random percolation. We will show now that the 
number of links is a diverging quantity. To do so we extend exact relations proved for 
random-bond percolation to Potts correlated-site random-bond percolation (PCSRBP). 
In particular we will prove the relation 

PB(dPij/dPB) = (Aij) (6 )  
where pij is the probability that i and j are in the same cluster and (Aii) is the average 
number of cutting bonds between i and j .  To be more precise 

where E { g i }  is the set of all bonds in the sublattice made of sites in the site configuration 
i. C is a subset of E { v i }  and D = E { m i } - C ;  IC1 and ID1 are the number of bonds 
respectively in the subsets C and D. N is the total number of bonds in the lattice, 
Ai j  is the number of cutting bonds between i and j in the configuration C{ui}. Note 
that A, = 0 if i and j  are not connected. Analogouslypii is obtained from (7) substituting 
Aij  with the connectedness indicator yij  which is 1 if i and j are in the same droplet 
and zero otherwise. To prove relation (6) in PCSRBP we use the fact that in random 
bond percolation relation (6) is valid for any lattice (Coniglio 1982). In particular it 
is valid for any sublattice E{oi} made up of sites in state 1. If we average over all 
Potts configurations with the appropriate Boltzmann factor we obtain relation (6) for 
PCSRBP. From ( 6 ) ,  summing over j and dividing by S = XjpS we obtain 

PE$-' dsldp, = N l i n k s  (8) 
where Nlinks =Z(Aij)S-' is the number of links between two points separated by a 
distance of the order of the connectedness length 5. From equation (2) generalised 
to all values of q and (8) 

N l i n k s  (q)-U-'f3"/U6' ' ')  (9a ) 

NlinksK (l'yB. (9b 1 

N l i n k s  (4)K t -"6(q) .  (10) 

or from (1) 

If t = 0 and E + 0, Nlinks a&-' diverge with the super universal exponent 1 for any d, 
any 4 and any lattice. If pB = pB( T )  (U = 0) and the critical temperature is approached: 

We will give arguments to show that not only links but also blobs are present. 
We consider first the case d = 2. If there were only links, two points separated by 

a distance of the order of ( would be connected by a self-avoiding chain whose length 
would be given by N l i n k s  2 6 since the end-to-end distance is always smaller than any 
other path. From (96) it would follow that v&) 1. On the contrary there is evidence 
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from MKRG that vB(q) is an increasing function of q (Coniglio and Peruggi 1982) and 
vB(q)  =$ (den Nijs 1979). Therefore vB(q) > 1, and not only links are present but 
also blobs. If we are right at t = 0, E = 0 the incipient infinite droplet is then made 
of links and blobs in such a way that two points separated by a distance of the order 
b are related to the number of links by Nlinks ~ b ’ ’ ” ~ .  We should stress that these 
links are internal links in the sense that if one is broken the two points might still be 
connected by another chain (see figure 1). 

Figure 1. ( a )  Structure of the incipient infinite ‘droplet’ in the q-state Potts model as 
defined in the text. The backbone (full lines) is made of links and blobs. For q = 1 the 
‘droplet’ coincides with the incipient infinite cluster in the random percolation model. As 
q increases the number of links decreases for fixed values of 6. ( 6 )  Self-similar structure 
of the backbone of the incipient infinite ‘droplet’ at the Potts critical temperature where 
the droplet size diverges. This is also the structure of the blobs in ( n  ). 

Note also that, since vB(q) is an increasing function of q, the number of links for 
a given distance b decreases. This is rather intuitive due to the fact that the correlation 
makes the blobs more dominant. 

It is interesting to note that Coniglio and Peruggi (1982) using MKRG found a 
value of q =q* where v i 1  = 0. They interpreted this value as the critical value above 
which the Potts transition becomes of first order. In this context this result implies 
that for such value of q* the number of links would vanish, i.e. above q* the droplets 
will lose their quasi-one-dimensional character and the coalescence of droplets which 
gives rise to the transition will lead to a discontinuity in the order parameter. 

For d = 3 there is no calculation of v B ( 4  > l ) ,  but it could be computed by Monte 
Carlo methods using the same algorithm implemented to study the Ising droplets 
(Stauffer 1981, Ottavi 1981, Roussenq et a1 1982, Heermann and Stauffer 1981, Jan 
et a1 1982, Kertesz et a1 1983). 

We expect, in analogy with random percolation, that the blobs become less 
important until they disappear for d =6 .  This is consistent with the result for the 
king model that gives vB = 2/(d - 2) near d = 6 and vB = 2 for d = 6 which reproduces 
the Bethe lattice case where no blobs are present. 

We want to mention that the behaviour of v g  indicated above €or the Ising model 
(q = 2 )  has been confirmed and extended by a recent result of Benzoni and Cardy 
(1983). Using &-expansion techniques these authors proved at all orders in E the 
relation 

(11) 

where 771 is the algebraic power law decay exponent of the correlation function of the 
Ising model at T,. This relation, as they pointed out, seems to break down for low 
dimensionality. It is interesting to note that the connectedness length exponent of 

1 

v g  = 2/(d -2 + 771) 
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the Potts droplets diverges with an exponent f i  = 2/(d -2 + 7 )  when T = T, and 
pB = pB(T,), the density of occupied sites is considered as a variable and 77 is the 
algebraic power law decay exponent of the correlation function of the Potts model at 
T,. This relation is valid for any d and agrees with the general result of Weinrib and 
Halperin (1983). 

We want now to discuss briefly the structure of the usual clusters (the maximal 
set of NN ‘down’ spins) in the Ising model. For d = 2 we know that the critical point 
is characterised by the onset of an infinite cluster of ‘down’ spins and that the incipient 
infinite cluster is destroyed only if a bond probability between ‘down’ spins is below 
the special value pB = 1 -exp(-2J/kT) (Coniglio and Klein 1980). If the incipient 
infinite cluster of ‘down’ spins were made only of a quasi-one-dimensional chain of 
links and blobs, an infinitesimal change of p from p = 1 would have destroyed the 
onset of the infinite cluster. Therefore we argue that the incipient infinite cluster in 
the Ising model in d = 2 is only made of blobs without links. 

In three dimensions we know that the infinite cluster does not disappear at T, 
(Muller-Krumbhaar 1974). Nevertheless we will show that this point is characterised 
by an anomalous percolation transition which has an effect on the structure of the 
infinite cluster. We use a theorem which states the following inequality (Coniglio et 
a1 1977) 

6.. = p , .  -p= - [I  m 2 gii 

where pii is the probability that i and j are in the same cluster, P, is the probability 
that a ‘down’ spin belongs to the infinite cluster and gii is the pair correlation function. 
Summing over j on both sides we obtain 

s=c bij 21 gii =*. 
Since ,y - (T - T,)-’, s’ - (T  - T,)-”* with y* 2 y. s’ is a quantity in random percolation 
which diverges at the percolation threshold where P, is not zero. In this sense the 
Ising critical point is characterised by an anomalous percolation transition without 
the disappearance of the infinite cluster. y* is the analogue of the mean cluster size 
exponent in the two-dimensional king model at the critical point. It would be 
interesting to investigate whether y* = y + p  as indicated in the theory of Bruce and 
Wallace (1983) in low dimensions. In analogy with the two-dimensional case we also 
expect that the length defined by Z r&/X bii will diverge with the correlation thermal 
exponent v at the critical point. From what was said it follows that the infinite cluster 
near the critical point is made of highly correlated regions of linear dimension of the 
order of 5 connected by strings. The size of the correlated regions diverges with the 
exponent y *. 

If we introduce a bond probability we expect in the diagram PB-magnetisation 
(H = 0) a line where such a transition occurs (see figure 2). This line ends at the 
value pB(Tc) = 1 = exp(-2J/kTC). In the same diagram is also reproduced another 
anomalous percolation transition predicted by Delyon et a1 (1981) without the appear- 
ance of an infinite cluster. 

In conclusion, we have studied the structure of the incipient infinite droplet at the 
critical point of the q-state Potts model. This is a self-similar fractal made of links 
and blobs just as in random percolation. The number of links between points separated 
by a distance b diverges with an exponent vB(4) which coincides with the connectedness 
length exponent for 4 = 1. For 4 > 1, vB(q) differs from the correlation length exponent 
v (4 ) .  This exponent V B ( ~ )  has not raised much attention so far. It would be interesting 
to calculate it for its relation to the structure of the droplets. 
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Figure 2. Schematic phase diagram of three-dimensional site Isingcorrelated random-bond 
percolation in zero magnetic field (bond probability pB as function of magnetisation M 
or site probability p =i(l + M ) ) .  The broken line corresponds to a percolation transition 
in the structure of the infinite network, without the vanishing of the infinite cluster. The 
chain curve corresponds to a percolation transition in the cluster numbers without the 
appearance of an infinite cluster predicted by Delyon et a1 (1981). 
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